
Encrypted deduplication seamlessly combines encryption and deduplication to simultaneously achieve both data
security and storage efficiency. State-of-the-art encrypted deduplication systems mostly adopt a deterministic
encryption approach that encrypts each plaintext chunk with a key derived from the content of the chunk itself, so that
identical plaintext chunks are always encrypted into identical ciphertext chunks for deduplication. However, such
deterministic encryption inherently reveals the underlying frequency distribution of the original plaintext chunks. This
allows an adversary to launch frequency analysis against the resulting ciphertext chunks, and ultimately infer the
content of the original plaintext chunks.

We study how frequency analysis practically affects information leakage in encrypted deduplication storage, from both
attack and defense perspectives. We first propose a new inference attack that exploits chunk locality to increase the
coverage of inferred chunks. We conduct trace-driven evaluation on a real-world dataset, and show that the new
inference attack can infer a significant fraction of plaintext chunks under backup workloads. To protect against
frequency analysis, we borrow the idea of existing performance-driven deduplication approaches and consider an
encryption scheme called MinHash encryption, which disturbs the frequency rank of ciphertext chunks by encrypting
some identical plaintext chunks into multiple distinct ciphertext chunks. Our trace-driven evaluation shows that
MinHash encryption effectively mitigates the inference attack, while maintaining high storage efficiency.

The toolkit is used to simulate the attack and defense approaches based on the fsl trace that consists of fslhome
snapshots.

Jingwei Li, Chuan Qin, Patrick P. C. Lee, Xiaosong Zhang. Information Leakage in Encrypted Deduplication via
Frequency Analysis. In Proc. of IEEE/IFIP DSN, 2017.

The attack is running under Linux (e.g., Ubuntu 14.04) with a C++ compiler (e.g., g++). To run the attack program, you
need to install/compile the following dependencies.

Libssl API: run the command sudo apt-get install libssl-dev .
Snappy compression library: run the command sudo apt-get install libsnappy-dev .
Google Leveldb: a version of 1.20 is provided in util/
fs-hasher: a version
of 0.9.4 is provided in util/

The basic attack builds on classical frequency analysis. Follow the steps to
simulate the basic attack.

Step 1, configure pre-requsite components: copy util/fs-hasher/ and
 util/leveldb/ into attack/basic/ and compile them respectively.

Step 2, configure basic attack: modify variables in attack/basic/basic_script.sh to adapt expected settings:

 fsl specifies the path of the fsl trace.
 users specifies which users are collectively considered in backups.
 date_of_aux specifies the backup of which date is considered as auxiliary information.
 date_of_latest specifies the backup of which date is the target for inference.

Step 3, run basic attack: type the following commands to compile and run the basic attack.

$ cd attack/basic/

$ make

$./basic_script.sh

The locality-based attack exploits chunk locality to improve attack severity. To simulate the locality-based attack, follow
the steps below.

Step 1, configure pre-requsite components: copy util/fs-hasher/ and
 util/leveldb/ into attack/locality/ and compile them respectively.

Step 2, configure locality-based attack: In addition to the common variables (e.g., fsl , users , date_of_aux and
 date_of_latest), the locality-based attack builds on four parameters that are defined in
 attack/locality/locality_script.sh :

 u specifies the number of most frequent chunk pairs to be returned by frequency analysis in initializing the
inferred set.
 v specifies the number of most frequent chunk pairs to be returned by frequency analysis in each iteration.
 w specifies the maximum number of ciphertext-plaintext chunk pairs that can be held by the inferred set.
 leakage_rate specifies the ratio of the number of ciphertext-plaintext chunk pairs known by the adversary to the
total number of ciphertext chunks in the latest backup.

Step 3, run locality-based attack: type the following commands to compile and run the locality-based attack.

$ cd attack/locality/

$ make

$./locality_script.sh

To defend the locality-based attack, MinHash encryption derives an encryption key based on the minimum fingerprint
over a set (called segment) of adjacent chunks (that are assumed to be with an average size of 8KB), such that some
identical plaintext chunks can be encrypted into multiple distinct ciphertext chunks. To simulate the MinHash
encryption, follow the steps below.

Step 1, configure pre-requsite components: copy util/fs-hasher/ and
 util/leveldb/ into defense/minhash/ and compile them respectively.

Step 2, configure MinHash encryption: the MinHash encryption builds on two parameters that are defined in
 defense/minhash/k_minhash.cc :

Segment size: the MinHash implementation uses variable-size segmentation and identifies segment boundary
based on chunk fingerprints. By default, we set the average segment size, maximum segment size and minimum
segment size at 1MB, 2MB and 512KB, respectively. It is feasible to change segment sizes by modifying macro
variables SEG_SIZE , SEG_MIN and SEG_MAX ; note that when changing SEG_SIZE , it is needed to adjust the code in
line 112 of defense/minhash/k_minhash.cc , for example if average segment size is 512KB and 2MB, the line of
code should be changed as follows.

if (sq_size + size > SEG_MAX || (sq_size >= SEG_MIN && (hash[5] << 3) >> 3 == 0x1f)) // correspond to

average segment size of 512KB

if (sq_size + size > SEG_MAX || (sq_size >= SEG_MIN && (hash[5] << 1) >> 1 == 0x7f)) // correspond to

average segment size of 2MB

K: our implementation supports k-MinHash that derives an encryption key from a random k-minimum fingerprint
of a segment. By default, we use MinHash and set K_MINHASH by 1.

Step 3, configure locality-based attack: it is identical to Step 2 of the guideline of locality-based attack, except the
attack variables (e.g., u , v and w) locate in defense/minhash/defense_script.sh .

Step 4, run MinHash encryption to defend locality-based attack: type the following commands to run.

$ cd defense/minhash/

$ make

$./defense_script.sh

The output format is shown as follows

==========================Attack/Defense==========================

Auxiliary information: YYYY-MM-DD; Target backup: YYYY-MM-DD

[Parameters: (u, v, w) = ...]

Total number of unique ciphertext chunks: X

[Leakage rate: ...]

Correct inferences: Y

Inference rate: ...

Successfully inferred following chunks:

......

 X is the number of unique ciphertext chunks in the encryption of the target backup, while Y is the number of (unique)
chunks that can be successfully inferred by the attacks. The inference rate is computed by Y/X , that is slightly
affected by the sorting algorithm in frequency analysis. The reason is different sorting algorithms may break tied
chunks (that have the same frequency counts) in different ways and lead to (slightly) different results. The parameters
and leakage rate are only available in the simulation of locality-based attack and its defense. We output the
fingerprints of inferred plaintext chunks in both attacks and defense simulation.

Information Leakage in Encrypted
Deduplication via Frequency Analysis

Introduction

Publication

Preparation

Attacks

Basic Attack

Locality-based Attack

Defense

MinHash Encryption

Output Formats

http://tracer.filesystems.org/
https://github.com/google/leveldb
http://tracer.filesystems.org/fs-hasher-0.9.4.tar.gz

