
Encrypted deduplication seamlessly combines encryption and deduplication to simultaneously achieve both data
security and storage efficiency. State-of-the-art encrypted deduplication systems mostly adopt a deterministic
encryption approach that encrypts each plaintext chunk with a key derived from the content of the chunk itself, so that
identical plaintext chunks are always encrypted into identical ciphertext chunks for deduplication. However, such
deterministic encryption inherently reveals the underlying frequency distribution of the original plaintext chunks. This
allows an adversary to launch frequency analysis against the resulting ciphertext chunks, and ultimately infer the
content of the original plaintext chunks.

We study how frequency analysis practically affects information leakage in encrypted deduplication storage, from both
attack and defense perspectives. We propose a new inference attack that exploits chunk locality to increase the
coverage of inferred chunks. We conduct trace-driven evaluation on a real-world dataset, and show that the new
inference attack can infer a significant fraction of plaintext chunks under backup workloads. To protect against
frequency analysis, we present two defense schemes, namely MinHash encryption and scrambling, which aim to
disturb the frequency rank or break the chunk locality of ciphertext workloads. Our trace-driven evaluations show that
our combined MinHash encryption and scrambling scheme effectively mitigates the inference attack, while incurring
limited storage and performance overhead.

The toolkit includes the attack and defense implementations against the FSL dataset, as well as a deduplication
storage prototype based on an existing realistic deduplication system of data domain file system (DDFS).

Jingwei Li, Chuan Qin, Patrick P. C. Lee, Xiaosong Zhang. Information Leakage in Encrypted Deduplication via
Frequency Analysis. In Proc. of IEEE/IFIP DSN, 2017. Special thanks to Chufeng Tan for his help in preparing
source code.

The toolkit is running under Linux (e.g., Ubuntu 14.04) with a C++ compiler (e.g., g++). To run the programs, you need
to install/compile the following dependencies.

Libssl API: run the command sudo apt-get install libssl-dev for installation.
Snappy compression library: run the command sudo apt-get install libsnappy-dev for installation.
Google Leveldb: a version of 1.20 is provided in util/ .
fs-hasher: a version
of 0.9.4 is provided in util/ .

All components of our toolkit depend on fs-hasher and leveldb . Before configuring each component (e.g., the
attacks, the defenses, and the prototype), need to copy util/fs-hasher/ and util/leveldb/ into the
corresponding directory (e.g., attack/basic/ , attack/locality/ , defense/minhash/ , defense/scrambling/ ,
 defense/combined/ , and prototype/) and compile them, respectively.

For some machines, you need to change the maximum number of open files allowed:

$ sudo su
$ echo "* hard nofile 65535" >> /etc/security/limits.conf
$ echo "* soft nofile 65535" >> /etc/security/limits.conf

We provide the basic and the locality-based attacks against encrypted deduplication.

The basic attack builds on classical frequency analysis. Follow the following steps to simulate the basic attack.

Step 1, configure basic attack: modify variables in attack/basic/basic_script.sh to adapt expected settings:

 fsl specifies the path of the FSL trace.
 users specifies which users are collectively considered in backups.
 date_of_aux specifies the backup of which date is considered as auxiliary information.
 date_of_latest specifies the latest backup of which date is the target for inference.

Step 2, run basic attack: type the following commands to compile and run the basic attack.

$ cd attack/basic/ && make
$./basic_script.sh

The locality-based attack exploits chunk locality to improve attack severity. To simulate the locality-based attack, follow
the steps below.

Step 1, configure locality-based attack: In addition to the common variables (e.g., fsl , users , date_of_aux and
 date_of_latest), the locality-based attack builds on four specific parameters that are defined in
 attack/locality/locality_script.sh :

 u specifies the number of most frequent chunk pairs to be returned by frequency analysis in initializing the
inferred set.
 v specifies the number of most frequent chunk pairs to be returned by frequency analysis in each iteration.
 w specifies the maximum number of ciphertext-plaintext chunk pairs that can be held by the inferred set.
 leakage_rate specifies the ratio of the number of ciphertext-plaintext chunk pairs known by the adversary to the
total number of ciphertext chunks in the latest backup.

Step 2, run locality-based attack: type the following commands to compile and run the locality-based attack.

$ cd attack/locality/ && make
$./locality_script.sh

We provide the MinHash encryption, the scrambling, and the combination of both to defend against frequency
analysis.

MinHash encryption derives an encryption key based on the minimum fingerprint over a set (called segment) of
adjacent chunks, such that some identical plaintext chunks can be encrypted into multiple distinct ciphertext chunks
thereby disturbing frequency rank. To simulate the MinHash encryption, follow the steps below.

Step 1, configure MinHash encryption: the MinHash encryption builds on two parameters that are defined in
 defense/minhash/k_minhash.cc :

Segment size: the MinHash implementation uses variable-size segmentation and identifies segment boundary
based on chunk fingerprints. By default, we set the average segment size, maximum segment size and minimum
segment size at 1MB, 2MB and 512KB, respectively. It is feasible to change segment sizes by modifying macro
variables SEG_SIZE , SEG_MIN and SEG_MAX ; note that when changing SEG_SIZE , it is needed to adjust the
code in line 112 of defense/minhash/k_minhash.cc to adapt the global divisor, for example if the average
segment size is 512KB and 2MB, the line of code should be changed as follows.

if (sq_size + size > SEG_MAX || (sq_size >= SEG_MIN && (hash[5] << 3) >> 3 == 0x1f)) // corre
spond to an average segment size of 512KB
if (sq_size + size > SEG_MAX || (sq_size >= SEG_MIN && (hash[5] << 1) >> 1 == 0x7f)) // corre
spond to an average segment size of 2MB

K: our implementation supports k-MinHash that derives an encryption key from a random k-minimum fingerprint of
a segment. By default, we use MinHash and set K_MINHASH by 1.

Step 2, configure locality-based attack: it is identical to the Step 1 of the guideline of locality-based attack, except
the attack parameters (e.g., u , v and w) locate in defense/minhash/minhash.sh .

Step 3, run MinHash encryption to defend against locality-based attack: type the following commands to compile
and run.

$ cd defense/minhash/ && make
$./minhash.sh

Scrambling disturbs the processing sequence of chunks, so as to prevent an adversary from correctly identifying the
neighbors of each chunk in the locality-based attack. To simulate the scrambling scheme, follow the steps below.

Step 1, configure scrambling scheme: Like MinHash encryption, scrambling works on a segment basis, and builds
on three parameters of SEG_SIZE , SEG_MIN and SEG_MAX to define variable-size segmentation. You can follow the
Step 1 of the guideline of MinHash encryption to configure these parameters that are defined in
 defense/scrambling/scrambling.cc .

Step 2, configure locality-based attack: it is identical to the Step 1 of the guideline of locality-based attack, except
the attack parameters (e.g., u , v and w) locate in defense/scrambling/scrambling.sh .

Step 3, run scrambling to defend against locality-based attack: type the following commands to compile and run.

$ cd defense/scrambling/ && make
$./scrambling.sh

We also introduce a combined scheme that first scrambles the orders of chunks in a segment basis, and then
encrypts each chunk via MinHash encryption. The guideline of the attack is identical with that of MinHash encryption.

We design and implement a deduplication-based storage prototype based on DDFS. The key design is to store unique
chunks in logical order and further exploit chunk locality to accelerate deduplication. Instead of storing actual data, our
prototype works on metadata level. You can follow the following steps to evaluate the metadata access overhead of
either message-locked encryption (MLE) or the combined scheme based on our prototype.

Step 1, configure prototype: the prototype builds on two types of parameters, all of which are defined in
 prototype/ddfs.cc :

The cache-related parameter is the size LRU_SIZE of fingerprint cache. Note that we describe LRU_SIZE by the
maximum number of fingerprints that the cache can hold.

The Bloom filter-related parameters include the maximum number BLOOM_lenth of entries in the Bloom filter
array, and the false positive rate ERROR of Bloom filter.

Step 2, configure encryption scheme: we provide the deduplication simulation from the ciphertext chunks by either
the MLE or the combined scheme. You can configure the parameters of the combined scheme by modifying
 SEG_MIN , SEG_MAX , SEG_SIZE , and K_MINHASH in prototype/combined.cc (see the Step 1 of the guideline of
MinHash encryption).

Step 3, run storage simulation: type the following commands to compile and run the simulation.

$ cd prototype/ && make
$./combined.sh // run the combined scheme
$./mle.sh // run the MLE scheme

The output format of attack/defense is shown as follows.

==========================Attack/Defense==========================
Auxiliary information: YYYY-MM-DD; Target backup: YYYY-MM-DD
[Parameters: (u, v, w) = ...]
Total number of unique ciphertext chunks: X
[Leakage rate: ...]
Correct inferences: Y
Inference rate: ...

Successfully inferred following chunks:
......

 X is the number of unique ciphertext chunks in the encryption of the target backup, while Y is the number of
(unique) chunks that can be successfully inferred by the attacks. The inference rate is computed by Y/X , that is
slightly affected by the sorting algorithm in frequency analysis. The reason is different sorting algorithms may break
tied chunks (that have the same frequency counts) in different ways and lead to (slightly) different results. The
 parameters and leakage rate are only available in the simulation of locality-based attack and its defense. We
output the fingerprints of inferred plaintext chunks in both attack and defense simulation.

We output the metadata access overhead in storage simulation in the following format:

fslhomes-userX-YYYY-MM-DD
Index access: A
Update access: B
Loading access: C

The information elaborates the metadata access overhead of storing user X ’s backup on the date of YYYY-MM-DD .
The metadata access overhead includes index access, update access and loading access, all of which are evaluated
in the unit of times.

Attack and Defense Toolkit against Encrypted
Deduplication

Introduction

Publication

Preparation

Attacks

Basic Attack

Locality-based Attack

Defenses

MinHash Encryption

Scrambling

Combined

Deduplication Prototype

Outputs

Attack/Defense

Deduplication Simulation

http://tracer.filesystems.org/
https://github.com/google/leveldb
http://tracer.filesystems.org/fs-hasher-0.9.4.tar.gz

