
Attack and Defense Toolkit against
Encrypted Deduplication
Introduction
Encrypted deduplication seamlessly combines encryption and

deduplication to simultaneously achieve both data security and

storage efficiency. State-of-the-art encrypted deduplication

systems mostly adopt a deterministic encryption approach that

encrypts each plaintext chunk with a key derived from the

content of the chunk itself, so that identical plaintext chunks are

always encrypted into identical ciphertext chunks for

deduplication. However, such deterministic encryption

inherently reveals the underlying frequency distribution of the

original plaintext chunks. This allows an adversary to launch

frequency analysis against the resulting ciphertext chunks, and

ultimately infer the content of the original plaintext chunks.

We study how frequency analysis practically affects information

leakage in encrypted deduplication storage, from both attack

and defense perspectives. We propose a new inference attack

that exploits chunk locality to increase the coverage of inferred

chunks. We conduct trace-driven evaluation on a real-world

dataset, and show that the new inference attack can infer a

significant fraction of plaintext chunks under backup workloads.

To protect against frequency analysis, we present two defense

schemes, namely MinHash encryption and scrambling, which

aim to disturb the frequency rank or break the chunk locality of

ciphertext workloads. Our trace-driven evaluations show that

our combined MinHash encryption and scrambling scheme

effectively mitigates the inference attack, while incurring limited

storage and performance overhead.

The toolkit includes the attack and defense implementations

against the FSL dataset, as well as a deduplication storage

prototype based on an existing realistic deduplication system of

data domain file system (DDFS).

Publication
Jingwei Li, Chuan Qin, Patrick P. C. Lee, Xiaosong Zhang.

Information Leakage in Encrypted Deduplication via Frequency

Analysis. In Proc. of IEEE/IFIP DSN, 2017. Special thanks to

Chufeng Tan for his help in preparing source code.

Preparation
The toolkit is running under Linux (e.g., Ubuntu 14.04) with a

C++ compiler (e.g., g++). To run the programs, you need to

install/compile the following dependencies.

Libssl API: run the command sudo apt-get install libssl-dev

for installation.

Snappy compression library: run the command sudo apt-get

install libsnappy-dev for installation.

Google Leveldb: a version of 1.20 is provided in util/ .

fs-hasher: a version

of 0.9.4 is provided in util/ .

All components of our toolkit depend on fs-hasher and

leveldb . Before configuring each component (e.g., the attacks,

the defenses, and the prototype), need to copy util/fs-hasher/

and util/leveldb/ into the corresponding directory (e.g.,

attack/basic/ , attack/locality/ , defense/minhash/ ,

defense/scrambling/ , defense/combined/ , and prototype/) and

compile them, respectively.

For some machines, you need to change the maximum number

of open files allowed:

$ sudo su
$ echo "* hard nofile 65535" >> /etc/security/limits.conf
$ echo "* soft nofile 65535" >> /etc/security/limits.conf

Attacks
We provide the basic and the locality-based attacks against

encrypted deduplication.

Basic Attack
The basic attack builds on classical frequency analysis. Follow

the following steps to simulate the basic attack.

Step 1, configure basic attack: modify variables in

attack/basic/basic_script.sh to adapt expected settings:

fsl specifies the path of the FSL trace.

users specifies which users are collectively considered in

backups.

date_of_aux specifies the backup of which date is considered as

auxiliary information.

date_of_latest specifies the latest backup of which date is the

target for inference.

Step 2, run basic attack: type the following commands to

compile and run the basic attack.

$ cd attack/basic/ && make
$./basic_script.sh

Locality-based Attack
The locality-based attack exploits chunk locality to improve

attack severity. To simulate the locality-based attack, follow the

steps below.

Step 1, configure locality-based attack: In addition to the

common variables (e.g., fsl , users , date_of_aux and

date_of_latest), the locality-based attack builds on four

specific parameters that are defined in

attack/locality/locality_script.sh :

u specifies the number of most frequent chunk pairs to be

returned by frequency analysis in initializing the inferred set.

v specifies the number of most frequent chunk pairs to be

returned by frequency analysis in each iteration.

w specifies the maximum number of ciphertext-plaintext chunk

pairs that can be held by the inferred set.

leakage_rate specifies the ratio of the number of ciphertext-

plaintext chunk pairs known by the adversary to the total

number of ciphertext chunks in the latest backup.

Step 2, run locality-based attack: type the following commands

to compile and run the locality-based attack.

$ cd attack/locality/ && make
$./locality_script.sh

Advanced Locality-based Attack
The advanced locality-based attack specifically targets variable-

size chunks generated from content-defined chunking. It

leverages the size information to increase the severity of

locality-based attack.

Like the locality-based attack, the advanced locality-based attack

is configured by the parameters u , v , w , and leakage_rate ,

which are defined in attack/advanced/advanced_script.sh . To

compile and run the attack, type the following commands:

$ cd attack/advanced/ && make
$./advanced_script.sh

Defenses
We provide the MinHash encryption, the scrambling, and the

combination of both to defend against frequency analysis.

MinHash Encryption
MinHash encryption derives an encryption key based on the

minimum fingerprint over a set (called segment) of adjacent

chunks, such that some identical plaintext chunks can be

encrypted into multiple distinct ciphertext chunks thereby

disturbing frequency rank. To simulate the MinHash encryption,

follow the steps below.

Step 1, configure MinHash encryption: the MinHash encryption

builds on two parameters that are defined in

defense/minhash/k_minhash.cc :

Segment size: the MinHash implementation uses variable-size

segmentation and identifies segment boundary based on chunk

fingerprints. By default, we set the average segment size,

maximum segment size and minimum segment size at 1MB,

2MB and 512KB, respectively. It is feasible to change segment

sizes by modifying macro variables SEG_SIZE , SEG_MIN and

SEG_MAX ; note that when changing SEG_SIZE , it is needed to

adjust the code in line 112 of defense/minhash/k_minhash.cc to

adapt the global divisor, for example if the average segment size

is 512KB and 2MB, the line of code should be changed as

follows.

if (sq_size + size > SEG_MAX || (sq_size >= SEG_MIN && (hash[5] << 3) >>
 3 == 0x1f)) // correspond to an average segment size of 512KB
if (sq_size + size > SEG_MAX || (sq_size >= SEG_MIN && (hash[5] << 1) >>
 1 == 0x7f)) // correspond to an average segment size of 2MB

K: our implementation supports k-MinHash that derives an

encryption key from a random k-minimum fingerprint of a

segment. By default, we use MinHash and set K_MINHASH by 1.

Step 2, configure locality-based attack: it is identical to the Step 1

of the guideline of locality-based attack, except the attack

parameters (e.g., u , v and w) locate in

defense/minhash/minhash.sh .

Step 3, run MinHash encryption to defend against locality-based

attack: type the following commands to compile and run.

$ cd defense/minhash/ && make
$./minhash.sh

Scrambling
Scrambling disturbs the processing sequence of chunks, so as to

prevent an adversary from correctly identifying the neighbors of

each chunk in the locality-based attack. To simulate the

scrambling scheme, follow the steps below.

Step 1, configure scrambling scheme: Like MinHash encryption,

scrambling works on a segment basis, and builds on three

parameters of SEG_SIZE , SEG_MIN and SEG_MAX to define

variable-size segmentation. You can follow the Step 1 of the

guideline of MinHash encryption to configure these parameters

that are defined in defense/scrambling/scrambling.cc .

Step 2, configure locality-based attack: it is identical to the Step 1

of the guideline of locality-based attack, except the attack

parameters (e.g., u , v and w) locate in

defense/scrambling/scrambling.sh .

Step 3, run scrambling to defend against locality-based attack:

type the following commands to compile and run.

$ cd defense/scrambling/ && make
$./scrambling.sh

Combined
We also introduce a combined scheme that first scrambles the

orders of chunks in a segment basis, and then encrypts each

chunk via MinHash encryption. The guideline of the attack is

identical with that of MinHash encryption.

Deduplication Prototype
We design and implement a deduplication-based storage

prototype based on DDFS. The key design is to store unique

chunks in logical order and further exploit chunk locality to

accelerate deduplication. Instead of storing actual data, our

prototype works on metadata level. You can follow the following

steps to evaluate the metadata access overhead of either

message-locked encryption (MLE) or the combined scheme

based on our prototype.

Step 1, configure prototype: the prototype builds on two types of

parameters, all of which are defined in prototype/ddfs.cc :

The cache-related parameter is the size LRU_SIZE of fingerprint

cache. Note that we describe LRU_SIZE by the maximum

number of fingerprints that the cache can hold.

The Bloom filter-related parameters include the maximum

number BLOOM_lenth of entries in the Bloom filter array, and

the false positive rate ERROR of Bloom filter.

Step 2, configure encryption scheme: we provide the

deduplication simulation from the ciphertext chunks by either

the MLE or the combined scheme. You can configure the

parameters of the combined scheme by modifying SEG_MIN ,

SEG_MAX , SEG_SIZE , and K_MINHASH in prototype/combined.cc

(see the Step 1 of the guideline of MinHash encryption).

Step 3, run storage simulation: type the following commands to

compile and run the simulation.

$ cd prototype/ && make
$./combined.sh // run the combined scheme
$./mle.sh // run the MLE scheme

Outputs
Attack/Defense
The output format of attack/defense is shown as follows.

==========================Attack/Defense==========================
Auxiliary information: YYYY-MM-DD; Target backup: YYYY-MM-DD
[Parameters: (u, v, w) = ...]
Total number of unique ciphertext chunks: X
[Leakage rate: ...]
Correct inferences: Y
Inference rate: ...

Successfully inferred following chunks:
......

X is the number of unique ciphertext chunks in the encryption

of the target backup, while Y is the number of (unique) chunks

that can be successfully inferred by the attacks. The inference

rate is computed by Y/X , that is slightly affected by the sorting

algorithm in frequency analysis. The reason is different sorting

algorithms may break tied chunks (that have the same

frequency counts) in different ways and lead to (slightly)

different results. The parameters and leakage rate are only

available in the simulation of locality-based attack and its

defense. We output the fingerprints of inferred plaintext chunks

in both attack and defense simulation.

Deduplication Simulation
We output the metadata access overhead in storage simulation

in the following format:

fslhomes-userX-YYYY-MM-DD
Index access: A
Update access: B
Loading access: C

The information elaborates the metadata access overhead of

storing user X ’s backup on the date of YYYY-MM-DD . The

metadata access overhead includes index access, update access

and loading access, all of which are evaluated in the unit of

times.

http://tracer.filesystems.org/
https://github.com/google/leveldb
http://tracer.filesystems.org/fs-hasher-0.9.4.tar.gz

