
OpenEC v1.0.0 User Guide

ADSLab @ CUHK

Release: Feb 2019

Contents

1

Abstract

In this user guide, we explain how to install and run OpenEC atop existing distributed
storage systems (DSSs). We first explain the preparation steps for running OpenEC (§??).
We next explain how to integrate OpenEC with HDFS-3 (§??), HDFS-RAID (§??), and QFS
(§??). We then explain how to issue basic operations via OpenEC, including writes, reads
(both normal and degraded reads), and recovery. Finally, we show how we can add a new era-
sure code via OpenEC. Please refer to our FAST’19 paper for the design details of OpenEC.

1 Preparation

OpenEC has been tested in Ubuntu 14.04. We create a user openec and install the packages under
its home directory /home/openec. You may need the sudo access in order to install some of the
packages via apt-get.

Before installing OpenEC, please first install the following prerequisite libraries.

• cmake v3.1 or higher

$ sudo apt-get install cmake

• g++ v4.8.4

We need a C++ compiler that supports the C++11 standard.

$ sudo apt-get install g++

• redis v3.2.8 or higher

Download and install redis-3.2.8.tar.gz.

$ tar -zxvf redis-3.2.8.tar.gz

$ cd redis-3.2.8

$ make

$ sudo make install

Install redis as a background daemon. You can just use the default settings.

$ cd utils

$ sudo ./install server.sh

Configure redis to be remotely accessible.

2

$ sudo service redis 6379 stop

Edit /etc/redis/6379.conf. Find the line with bind 127.0.0.0 and modify it to bind 0.0.0.0.
Then start redis.

$ sudo service redis 6379 start

• hiredis

Download and install hiredis.tar.gz.

$ tar -zxvf hiredis.tar.gz

$ cd hiredis

$ make

$ sudo make install

• gf-complete v1.03

Download and install gf-complete.tar.gz. Note that you may need to first install autoconf
and libtool.

$ tar -zxvf gf-complete.tar.gz

$ cd gf-complete

$./autogen.sh

$./configure

$ make

$ sudo make install

• ISA-L v2.14.0 or higher

Download and install isa-l-2.14.0.tar.gz. Note that you may need to first install yasm, which
is required by ISA-L.

$ tar -zxvf isa-l-2.14.0.tar.gz

$ cd isa-l-2.14.0

$./autogen.sh

$./configure

$ make

$ sudo make install

3

2 OpenEC with HDFS-3

2.1 Prerequisites

The following packages need to be first installed in order to run HDFS-3.

• maven v3.5.0 or higher

Download apache-maven-3.5.0-bin.tar.gz.

$ tar -zxvf apache-maven-3.5.0-bin.tar.gz

Set the environment variables M2 HOME and PATH. You may also need to set MVN OPTS if you
are behind a proxy.

export M2 HOME=/home/openec/apache-maven-3.5.0

export PATH=$PATH:$M2 HOME/bin

• java8

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java8-installer

$ sudo apt-get install oracle-java8-set-default

Set the environment variable JAVA HOME.

2.2 Install HDFS-3 with OpenEC

Download hadoop-3.0.0-src.tar.gz (a copy is available on our project website) and extract the
source code to /home/openec.

$ tar -zxvf hadoop-3.0.0-src.tar.gz

We configure the environment variables for HDFS-3. It is recommended to include the following
configuration in ~/.bashrc.

export HADOOP SRC DIR=/home/openec/hadoop-3.0.0-src

export HADOOP HOME=$HADOOP SRC DIR/hadoop-dist/target/hadoop-3.0.0

export PATH=$HADOOP HOME/bin:$HADOOP HOME/sbin:$PATH

export HADOOP CLASSPATH=$JAVA HOME/lib/tools.jar:$HADOOP CLASSPATH

export CLASSPATH=$JAVA HOME/lib:$CLASSPATH

export LD LIBRARY PATH=$HADOOP HOME/lib/native:$JAVA HOME/jre/lib/

amd64/server/:/usr/local/lib:$LD LIBRARY PATH

4

Download openec-v1.0.0.tar.gz from our project website and extract the source code to /home/openec.
We can install the patch of OpenEC into HDFS-3 by simply running the script install.sh. The script
will also compile the modified source code of HDFS-3.

$ tar -zxvf openec-v1.0.0.tar.gz

$ cd openec-v1.0.0/hdfs3-integration

$./install.sh

Please run the following commands to compile OpenEC for HDFS-3.

$ cd openec-v1.0.0

$ cmake . -DFS TYPE:STRING=HDFS3

$ make

2.3 Example Architecture

Table ?? shows an example architecture for our HDFS-3 integration. The OpenEC controller
runs in the same node as the HDFS-3 NameNode. Each HDFS-3 DataNode is co-located with an
OpenEC agent. Please distribute the working directories (~/hadoop-3.0.0-src and ~/openec-v1.
0.0) to all the nodes in the testbed.

IP HDFS3 OpenEC

192.168.0.1 NameNode Controller
192.168.0.2 DataNode Agent
192.168.0.3 DataNode Agent
192.168.0.4 DataNode Agent
192.168.0.5 DataNode Agent

Table 1: Example architecture for HDFS-3 integration.

2.4 HDFS-3 Configuration

We provide sample configuration files under openec-v1.0.0/hdfsraid-integration/conf for
HDFS-3. Here, we show some of the fields related to the integration of OpenEC. You may leave
other fields to be the same as our sample configurations. You can copy our sample configura-
tion files to HADOOP_HOME/etc/hadoop and configure your HDFS-3 there. Please distribute the
configuration files to all the nodes in the testbed.

• hadoop-env.sh:

5

Field Default Description

JAVA HOME -
Path to java installation.
e.g. /usr/lib/jvm/java-8-oracle

HADOOP CLASSPATH
$HADOOP HOME/oeclib/*:
$JAVA HOME/lib* Path to OpenEC and java libraries.

• core-site.xml:

Field Default Description

fs.defaultFS hdfs://192.168.0.1:9000 NameNode configuration.

hadoop.tmp.dir
/home/openec/hadoop-3.0.0-src/hadoop-dist/
target/hadoop-3.0.0 Base directory for hdfs3 temporary directories.

• hdfs-site.xml:

Field Default Description

dfs.replication 1 Replication factor of HDFS.
dfs.blocksize 1048576 The size of a block in bytes.

dfs.block.replicator.classname
org.apache.hadoop.hdfs.server.
blockmanagement.
BlockPlacementPolicyOEC

OpenEC placement integartion.

link.oec true
true: Run HDFS3 with OpenEC.
false: Run HDFS3 without OpenEC.

oec.controller.addr 192.168.0.1 IP address of OpenEC controller.
oec.local.addr - IP address of a node itself.
oec.pktsize 131072 The size of a packet in OpenEC.

• workers:

192.168.0.2
192.168.0.3
192.168.0.4
192.168.0.5

To start HDFS-3, we run the following commands in the NameNode.

$ hdfs namenode -format

$ start-dfs.sh

3 OpenEC with HDFS-RAID

3.1 Prerequisites

The following packages need first to be installed.

6

• ant

Download apache-ant-1.9.13-bin.tar.gz.

$ tar -zxvf apache-ant-1.9.13.-bin.tar.gz

Set the environment variables ANT HOME and PATH. You may also need to set ANT OPTS if
you are behind a proxy.

export ANT HOME=~/apache-ant-1.9.13

export PATH=$PATH:$ANT HOME/bin

• java8

If you have installed java8, please skip this step.

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java8-installer

$ sudo apt-get install oracle-java8-set-default

Set the environment variable JAVA HOME.

3.2 Install HDFS-RAID with OpenEC

Download hadoop-20.tar.gz (a copy is available on our project website).

$ tar -zxvf hadoop-20.tar.gz

We configure the environment variables for HDFS-RAID. It is recommended to include the fol-
lowing configuration in ~/.bashrc.

export HADOOP HOME=/home/openec/hadoop-20

export PATH=$HADOOP HOME/bin:$HADOOP HOME/sbin:$PATH

export HADOOP CLASSPATH=$JAVA HOME/lib/tools.jar:$HADOOP CLASSPATH

export CLASSPATH=$JAVA HOME/lib:$CLASSPATH

export LD LIBRARY PATH=$HADOOP HOME/lib/native:$JAVA HOME/jre/lib/

amd64/server/:/usr/local/lib:$LD LIBRARY PATH

Download openec-v1.0.0.tar.gz from our project website and extract the source code to /home/openec.
We can install the patch of OpenEC into HDFS-RAID by simply running the script install.sh. The
script will also compile the modified source code of HDFS-RAID.

7

$ tar -zxvf openec-v1.0.0.tar.gz

$ cd openec-v1.0.0/hdfs3-integration

$./install.sh

We now compile the source code of OpenEC. Please run the following commands.

$ cd openec-v1.0.0

$ cmake . -DFS TYPE:STRING=HDFSRAID

$ make

3.3 Example Architecture

Table ?? shows an example architecture for our HDFS-RAID integration. The OpenEC con-
troller runs in the same node as the HDFS-RAID NameNode. Each HDFS-RAID DataNode is
co-located with an OpenEC agent. Please distribute the working directories (~/hadoop-20 and
~/openec-v1.0.0) to all the nodes in the testbed.

IP HDFS-RAID OpenEC

192.168.0.1 NameNode Controller
192.168.0.2 DataNode Agent
192.168.0.3 DataNode Agent
192.168.0.4 DataNode Agent
192.168.0.5 DataNode Agent

Table 2: Example architecture for HDFS-RAID integration.

3.4 HDFS-RAID Configuration

We provide sample configuration files under openec-v1.0.0/hdfsraid-integration/conf for
HDFS-RAID. Here, we show some of the fields in detail. You may leave other fields to be the same
as our sample configurations. You can copy our sample configuration files to HADOOP_HOME/conf

and configure your HDFS-RAID there. Please distribute the configuration files to all the nodes in
the testbed.

• hadoop-env.sh:

Field Default Description

JAVA HOME -
Path to java installation.
e.g. /usr/lib/jvm/java-8-oracle

HADOOP CLASSPATH
$HADOOP HOME/oeclib/*:
$JAVA HOME/lib* Path to OpenEC and java libraries.

• core-site.xml:

8

Field Default Description

fs.default.name hdfs://192.168.0.1:9000 NameNode configuration.
hadoop.tmp.dir /home/openec/hadoop-20/tmp Base directory for HDFS-RAID temporary directories.
topology.script.file.name - Path to rackAware.sh

• hdfs-site.xml:

Field Default Description

dfs.http.address 192.168.0.1:50070 HTTP address of NameNode
dfs.replication 1 Replication factor of HDFS-RAID.
dfs.block.size 1048576 The size of a block in bytes.

dfs.block.replicator.classname
org.apache.hadoop.hdfs.server.
namenode.BlockPlacementPolicyOEC OpenEC placement class.

link.oec true Run HDFS-RAID with OpenEC.
oec.controller.addr 192.168.0.1 IP address of OpenEC controller.
oec.local.addr - IP address of a node itself.
oec.pktsize 131072 The size of a packet in OpenEC.

• masters:

192.168.0.1

• slaves:

192.168.0.2
192.168.0.3
192.168.0.4
192.168.0.5

To start HDFS-RAID, we run the following commands in the NameNode.

$ hadoop namenode -format

$ start-dfs.sh

4 OpenEC with QFS

4.1 Prerequisites

The following packages need to be first installed.

9

• libboost-regex-dev 1.3.4 or higher

$ sudo apt-get install libboost-regex-dev

• libkrb5-dev

$ sudo apt-get install libkrb5-dev

• xfslibs-dev

$ sudo apt-get install xfslibs-dev

• libssl-dev

$ sudo apt-get install libssl-dev

• python-dev

$ sudo apt-get install python-dev

• libfuse-dev

$ sudo apt-get install libfuse-dev

4.2 Install QFS with OpenEC

Download qfs-v2.1.1.tar.gz (a copy is available on our project website).

$ tar -zxvf qfs-2.1.1.tar.gz

We configure the environment variables for QFS. It is recommended to include the following con-
figuration in ~/.bashrc.

export export QFS HOME=/home/openec/qfs

export PATH=$QFS HOME/build/release/bin:$PATH

Download openec-v1.0.0.tar.gz from our project website and extract the source code to /home/openec.
We can install the patch of OpenEC into QFS by simply running the script install.sh. The script
will also compile the modified source code of QFS.

10

$ tar -zxvf openec-v1.0.0.tar.gz

$ cd openec-v1.0.0/qfs-integration

$./install.sh

We now compile the source code of OpenEC. Please run the following commands.

$ cd openec-v1.0.0

$ cmake . -DFS TYPE:STRING=QFS

$ make

4.3 Example Architecture

Table ?? shows an example architecture for our QFS integration. The OpenEC controller runs
in the same node as the QFS metaserver. Each QFS chunkserver is co-located with an OpenEC
agent. Please distribute the working directories (~/qfs and ~/openec-v1.0.0) to all the nodes in
the testbed.

IP QFS OpenEC

192.168.0.1 Metaserver Controller
192.168.0.2 Chunkserver Agent
192.168.0.3 Chunkserver Agent
192.168.0.4 Chunkserver Agent
192.168.0.5 Chunkserver Agent

Table 3: Example architecture for QFS integration.

4.4 QFS Configuration

We also provide sample configuration files for QFS. We show some of the fields in detail and other
fields can be the same as in our samples.

• MetaServer.conf:

Field Default Description

metaServer.clientPort 20000 Port number for metaserver to communicate with clients.
metaServer.chunkServerPort 30000 Port number for metaserver to communicate with chunkserver.
metaServer.logDir - Directory for the log of metaserver.
metaServer.cpDir - Directory for the checkpoint of metaserver.

openec.useoec true
true: enable OpenEC integrations.
false; disable OpenEC integrations.

openec.localip -
openec.coorip 192.168.0.1 IP address of OpenEC controller.

11

• ChunkServer.conf:

Field Default Description

chunkServer.metaServer.hostname 192.168.0.1 IP address of metaserver.
chunkServer.metaServer.port 30000 Port number for metaserver to communicate with chunkserver.
chunkServer.clientPort 22000 Port number for chunkserver to communicate with clients.
chunkServer.chunkDir - Directory for chunkserver to store chunks.
chunkServer.pidFile - File to store pid of chunkserver

openec.useoec true
true: enable OpenEC integrations.
false; disable OpenEC integrations.

openec.localip -
openec.coorip 192.168.0.1 IP address of OpenEC controller.

To start the metaserver, please run the following command:

$ metaserver MetaServer.conf

To start each chunkserver, please run the following command:

$ chunkserver ChunkServer.conf

5 OpenEC Configuration

We provide sample configuration files for OpenEC under openec-v1.0.0/conf. Table ?? ex-
plains the default configuration in our sample. Table ?? and Table ?? show the configuration of an
erasure code and an offline encoding pool, respectively.

Field Default Description

controller.address 192.168.0.1 IP address of controller.

agents.address

/default/192.168.0.2
/default/192.168.0.3
/default/192.168.0.4
/default/192.168.0.5

A list of IP addresses of all agents, in the form of zone/IP,
where zone denotes the zone (e.g. rack or datacenter).

local.address - IP address of a node itself.
packet.size 131072 The size of a packet.
dss.type - Type of DSS. Please choose from HDFS3, HDFSRAID and QFS.

dss.parameter -
IP and port of DSS for client access. e.g. 192.168.0.1, 9000
for HDFS3.

ec.policy Table ??
offline.pool Table ??

Table 4: sysSetting.xml for OpenEC

To start OpenEC, we run the following command in controller:

12

Field Default Description

ecid rs 4 3 Unique id for an erasure code.
class RSCONV Class name of erasure code implementation.
n 4 Parameter N for the erasure code.
k 3 Parameter K for the erasure code.
w 1 Parameter W for the erasure code.

opt -1

Optimization level for OpenEC. Four levels of optimization is provided
by OpenEC, including -1, 0, 1, 2. -1: no optimization are enabled.
0: BindX is enabled. 1: BindX and BindY are enabled. 2: Hierarchical
awareness is enabled.

Table 5: ec.policy configuration

Field Default Description

poolid rs 4 3 pool Unique id for an offline encoding pool.
ecid rs 4 3 Erasure code that is applied for the pool.
base 1 Block size (in MiB) for the pool, which is no larger than the block size in HDFS3.

Table 6: offline.pool configuration

$ cd openec-v1.0.0

$ python script/start.py

6 Basic Operations

We explain how to issue writes, reads (normal and degraded reads), and recovery via OpenEC.

6.1 Write

OpenEC supports two modes to write a file into a DSS: (i) writing a file with online encoding
enabled on the writing path; and (ii) writing a file into an offline encoding pool, in which a coding
group is organized and encoded offline.

We run OECClient to issue a write request. We show the usage and a command-line example
to write a file (called input) of size 3 MiB and store it as /testfile1 with online encoding enabled.
The erasure code for online encoding is rs 4 3 (i.e., RS codes with n = 4 and k = 3), which is
configured in sysSetting.xml. Please note that this command should run in a node that holds an
Agent.

Usage:

./OECClient write [inputfile] [saveas] [ecid] online [sizeinMB]

Example:

13

$./OECClient write input /testfile1 rs 4 3 online 3

We now show how to apply offline encoding. We first write the file into our offline encoding
pool. The command-line example in the following shows that we write the file (input) and store
it as /testfile2. The offline encoding pool is rs 4 3 pool, which is configured in sysSetting.xml.
Please note that this command should also run in a node that holds an Agent.

Usage:

./OECClient write [inputfile] [saveas] [poolid] offline [sizeinMB]

Example:

$./OECClient write input /testfile2 rs 4 3 pool offline 3

We then run the following command to instruct OpenEC to start offline encoding.

$./OECClient startEncode

When the offline encoding for a coding group finishes, we can check the log of the controller
(coor output). The following line means that the offline encoding for a coding group finishes,
where xxxxxx denotes the name of the coding group. Note that the name of a coding group is
assigned by OpenEC.

offlineEnc for xxxxxx finishes

6.2 Read

We run OECClient to read a file, either a normal read or a degraded read. The difference between
a normal read and a degraded read is that for a degraded read, some physical blocks in the DSS are
unavailable (e.g., deleted) before the read request is issued. Please note that this command should
also run in a node that holds an Agent.

Usage:

./OECClient read [filename] [saveas]

Example:

$./OECClient read /testfile1 output1

$./OECClient read /testfile2 output2

14

6.3 Recovery

For recovery, we can delete some physical blocks in the DSS and then run the following command
to instruct OpenEC to repair the lost blocks.

$./OECClient startRepair

We can see the following information in the log of controller, which denotes that OpenEC finishes
repairing a block. Note that xxxxxx is the corresponding block name in OpenEC.

repair for xxxxxx finishes

7 EC Design in OpenEC

We introduce how to design a new erasure code in OpenEC. The following shows the base class
of an erasure code implementation in OpenEC. To add a new erasure code, we need to extend this
base class and provide the implementations for Encode, Decode and Place methods. We provide
several erasure code implementations under openec-v1.0.0/src/ec. Please refer to our sample
implementations there.

class ECBase {
public:

int n, k, w;

int opt;

ECBase();

ECBase(int n, int k, int w, int opt, vector<string> param);

virtual ECDAG* Encode() = 0;

virtual ECDAG* Decode(vector<int> from, vector<int> to) = 0;

virtual void Place(vector<vector<int>>& group) = 0;

};

15

