Package | Description |
---|---|
moa.classifiers.functions | |
moa.classifiers.meta | |
moa.classifiers.rules | |
moa.classifiers.rules.functions | |
moa.classifiers.rules.meta | |
moa.classifiers.trees |
Modifier and Type | Class and Description |
---|---|
class |
AdaGrad
Implements the AdaGrad oneline optimiser for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
|
class |
SGD
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
|
class |
SGDMultiClass
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
|
Modifier and Type | Class and Description |
---|---|
class |
RandomRules |
Modifier and Type | Class and Description |
---|---|
class |
AMRulesRegressor |
class |
AMRulesRegressorOld |
Modifier and Type | Interface and Description |
---|---|
interface |
AMRulesRegressorFunction |
Modifier and Type | Class and Description |
---|---|
class |
AdaptiveNodePredictor |
class |
FadingTargetMean |
class |
LowPassFilteredLearner |
class |
Perceptron |
class |
TargetMean |
Modifier and Type | Class and Description |
---|---|
class |
RandomAMRules
Random AMRules algoritgm that performs analogous procedure as the Random Forest Trees but with Rules
|
class |
RandomAMRulesOld |
Modifier and Type | Class and Description |
---|---|
class |
FIMTDD |
class |
ORTO |
Copyright © 2019 University of Waikato, Hamilton, NZ. All Rights Reserved.