public class BasicClassificationPerformanceEvaluator extends AbstractOptionHandler implements ClassificationPerformanceEvaluator
Modifier and Type | Class and Description |
---|---|
class |
BasicClassificationPerformanceEvaluator.BasicEstimator |
static interface |
BasicClassificationPerformanceEvaluator.Estimator |
Modifier and Type | Field and Description |
---|---|
protected BasicClassificationPerformanceEvaluator.Estimator[] |
columnKappa |
FlagOption |
confusionMatrixOption |
FlagOption |
f1PerClassOption |
FlagOption |
falseAlarmOption |
int |
numClasses |
protected BasicClassificationPerformanceEvaluator.Estimator[] |
precision |
FlagOption |
precisionPerClassOption |
FlagOption |
precisionRecallOutputOption |
protected BasicClassificationPerformanceEvaluator.Estimator[] |
recall |
FlagOption |
recallPerClassOption |
protected BasicClassificationPerformanceEvaluator.Estimator[] |
rowKappa |
double |
totalNumDaysBeforeFailure |
protected BasicClassificationPerformanceEvaluator.Estimator |
weightCorrect |
config
Constructor and Description |
---|
BasicClassificationPerformanceEvaluator() |
Modifier and Type | Method and Description |
---|---|
void |
addResult(Example<Instance> example,
double[] classVotes) |
void |
addResult(Example<Instance> testInst,
Prediction prediction)
Adds a learning result to this evaluator.
|
void |
addResultDelay(List<Instance> instances) |
double[] |
getConfusionMatrix() |
void |
getDescription(StringBuilder sb,
int indent)
Returns a string representation of this object.
|
double |
getF1Statistic() |
double |
getF1Statistic(int numClass) |
double |
getFractionCorrectlyClassified() |
double |
getFractionIncorrectlyClassified() |
double |
getKappaStatistic() |
double |
getKappaTemporalStatistic() |
Measurement[] |
getPerformanceMeasurements()
Gets the current measurements monitored by this evaluator.
|
double |
getPrecisionStatistic() |
double |
getPrecisionStatistic(int numClass) |
double |
getRecallStatistic() |
double |
getRecallStatistic(int numClass) |
double |
getTotalWeightObserved() |
protected BasicClassificationPerformanceEvaluator.Estimator |
newEstimator() |
protected void |
prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository)
This method describes the implementation of how to prepare this object for use.
|
void |
reset()
Resets this evaluator.
|
void |
reset(int numClasses) |
copy, getCLICreationString, getOptions, getPreparedClassOption, getPurposeString, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
copy, measureByteSize
protected BasicClassificationPerformanceEvaluator.Estimator weightCorrect
protected BasicClassificationPerformanceEvaluator.Estimator[] columnKappa
protected BasicClassificationPerformanceEvaluator.Estimator[] rowKappa
protected BasicClassificationPerformanceEvaluator.Estimator[] precision
protected BasicClassificationPerformanceEvaluator.Estimator[] recall
public int numClasses
public FlagOption precisionRecallOutputOption
public FlagOption precisionPerClassOption
public FlagOption recallPerClassOption
public FlagOption f1PerClassOption
public FlagOption confusionMatrixOption
public FlagOption falseAlarmOption
public double totalNumDaysBeforeFailure
public BasicClassificationPerformanceEvaluator()
public void reset()
LearningPerformanceEvaluator
reset
in interface LearningPerformanceEvaluator<Example<Instance>>
public void reset(int numClasses)
public void addResult(Example<Instance> example, double[] classVotes)
addResult
in interface LearningPerformanceEvaluator<Example<Instance>>
public Measurement[] getPerformanceMeasurements()
LearningPerformanceEvaluator
getPerformanceMeasurements
in interface LearningPerformanceEvaluator<Example<Instance>>
public double getTotalWeightObserved()
public double getFractionCorrectlyClassified()
public double getFractionIncorrectlyClassified()
public double getKappaStatistic()
public double getKappaTemporalStatistic()
public double getPrecisionStatistic()
public double getPrecisionStatistic(int numClass)
public double getRecallStatistic()
public double getRecallStatistic(int numClass)
public double getF1Statistic()
public double getF1Statistic(int numClass)
public double[] getConfusionMatrix()
public void getDescription(StringBuilder sb, int indent)
MOAObject
AbstractMOAObject.toString
to give a string representation of the object.getDescription
in interface MOAObject
sb
- the stringbuilder to add the descriptionindent
- the number of characters to indentpublic void addResult(Example<Instance> testInst, Prediction prediction)
LearningPerformanceEvaluator
addResult
in interface LearningPerformanceEvaluator<Example<Instance>>
protected void prepareForUseImpl(TaskMonitor monitor, ObjectRepository repository)
AbstractOptionHandler
prepareForUseImpl
and not prepareForUse
since
prepareForUse
calls prepareForUseImpl
.prepareForUseImpl
in class AbstractOptionHandler
monitor
- the TaskMonitor to userepository
- the ObjectRepository to useprotected BasicClassificationPerformanceEvaluator.Estimator newEstimator()
Copyright © 2019 University of Waikato, Hamilton, NZ. All Rights Reserved.