public class MultiLabelRule extends ObservableMOAObject
Modifier and Type | Field and Description |
---|---|
protected InstanceInformation |
instanceInformation |
protected LearningLiteral |
learningLiteral |
protected List<Literal> |
literalList |
protected MultiLabelRule |
otherBranchRule |
protected MultiLabelRule |
otherOutputsRule |
protected int |
ruleNumberID |
Constructor and Description |
---|
MultiLabelRule() |
MultiLabelRule(int id) |
MultiLabelRule(LearningLiteral learningLiteral) |
notify, notifyAll
copy, copy, measureByteSize, measureByteSize
protected LearningLiteral learningLiteral
protected int ruleNumberID
protected MultiLabelRule otherBranchRule
protected MultiLabelRule otherOutputsRule
protected InstanceInformation instanceInformation
public MultiLabelRule(LearningLiteral learningLiteral)
public MultiLabelRule()
public MultiLabelRule(int id)
public int getRuleNumberID()
public void setRuleNumberID(int ruleNumberID)
public boolean isCovering(MultiLabelInstance inst)
public int[] getOutputsCovered()
public int[] getInputsCovered()
public void getDescription(StringBuilder out, int indent)
MOAObject
AbstractMOAObject.toString
to give a string representation of the object.out
- the stringbuilder to add the descriptionindent
- the number of characters to indentprotected String getStaticOutput()
public boolean updateChangeDetection(MultiLabelInstance instance)
public boolean updateAnomalyDetection(MultiLabelInstance instance)
public void trainOnInstance(MultiLabelInstance instance)
public double getWeightSeenSinceExpansion()
public LearningLiteral getLearningNode()
public double[] getCurrentErrors()
public Prediction getPredictionForInstance(MultiLabelInstance instance)
public double getAnomalyScore()
public boolean tryToExpand(double splitConfidence, double tieThresholdOption)
public MultiLabelRule getNewRuleFromOtherBranch()
public MultiLabelRule getNewRuleFromOtherOutputs()
public String toString()
AbstractMOAObject
toString
in class AbstractMOAObject
public void setSplitCriterion(MultiLabelSplitCriterion splitCriterion)
public void setChangeDetector(ChangeDetector changeDetector)
public void setAnomalyDetector(AnomalyDetector anomalyDetector)
public void setNumericObserverOption(NumericStatisticsObserver numericStatisticsObserver)
public void setLearner(MultiLabelLearner learner)
public void setErrorMeasurer(MultiLabelErrorMeasurer errorMeasurer)
public void setOutputAttributesSelector(OutputAttributesSelector outputSelector)
public void setNominalObserverOption(NominalStatisticsObserver nominalStatisticsObserver)
public void setRandomGenerator(Random random)
public void setAttributesPercentage(double attributesPercentage)
public void setInputAttributesSelector(InputAttributesSelector inputSelector)
public boolean hasNewRuleFromOtherOutputs()
public void setInstanceTransformer(InstanceTransformer instanceTransformer)
public void addObserver(ObserverMOAObject o)
addObserver
in class ObservableMOAObject
public void clearOtherOutputs()
Copyright © 2019 University of Waikato, Hamilton, NZ. All Rights Reserved.