Modifier and Type | Method and Description |
---|---|
AttributeSplitSuggestion |
FIMTDDNumericAttributeClassObserver.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly) |
AttributeSplitSuggestion |
BinaryTreeNumericAttributeClassObserverRegression.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly) |
AttributeSplitSuggestion |
NominalAttributeClassObserver.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly) |
AttributeSplitSuggestion |
GreenwaldKhannaNumericAttributeClassObserver.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly) |
AttributeSplitSuggestion |
BinaryTreeNumericAttributeClassObserver.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly) |
AttributeSplitSuggestion |
GaussianNumericAttributeClassObserver.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly) |
AttributeSplitSuggestion |
VFMLNumericAttributeClassObserver.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly) |
AttributeSplitSuggestion |
AttributeClassObserver.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly)
Gets the best split suggestion given a criterion and a class distribution
|
AttributeSplitSuggestion |
NullAttributeClassObserver.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly) |
void |
FIMTDDNumericAttributeClassObserver.removeBadSplits(SplitCriterion criterion,
double lastCheckRatio,
double lastCheckSDR,
double lastCheckE)
A method to remove all nodes in the E-BST in which it and all it's
children represent 'bad' split points
|
protected AttributeSplitSuggestion |
BinaryTreeNumericAttributeClassObserver.searchForBestSplitOption(BinaryTreeNumericAttributeClassObserver.Node currentNode,
AttributeSplitSuggestion currentBestOption,
double[] actualParentLeft,
double[] parentLeft,
double[] parentRight,
boolean leftChild,
SplitCriterion criterion,
double[] preSplitDist,
int attIndex) |
protected AttributeSplitSuggestion |
BinaryTreeNumericAttributeClassObserverRegression.searchForBestSplitOption(BinaryTreeNumericAttributeClassObserverRegression.Node currentNode,
AttributeSplitSuggestion currentBestOption,
double[] actualParentLeft,
double[] parentLeft,
double[] parentRight,
boolean leftChild,
SplitCriterion criterion,
double[] preSplitDist,
int attIndex) |
protected AttributeSplitSuggestion |
FIMTDDNumericAttributeClassObserver.searchForBestSplitOption(FIMTDDNumericAttributeClassObserver.Node currentNode,
AttributeSplitSuggestion currentBestOption,
SplitCriterion criterion,
int attIndex)
Implementation of the FindBestSplit algorithm from E.Ikonomovska et al.
|
Modifier and Type | Class and Description |
---|---|
class |
GiniSplitCriterion
Class for computing splitting criteria using Gini
with respect to distributions of class values.
|
class |
InfoGainSplitCriterion
Class for computing splitting criteria using information gain
with respect to distributions of class values.
|
class |
InfoGainSplitCriterionMultilabel
Class for computing splitting criteria using information gain with respect to
distributions of class values for Multilabel data.
|
class |
SDRSplitCriterion |
class |
VarianceReductionSplitCriterion |
Modifier and Type | Method and Description |
---|---|
AttributeSplitSuggestion[] |
RuleActiveRegressionNode.getBestSplitSuggestions(SplitCriterion criterion) |
Modifier and Type | Interface and Description |
---|---|
interface |
AMRulesSplitCriterion |
Modifier and Type | Class and Description |
---|---|
class |
SDRSplitCriterionAMRules |
class |
SDRSplitCriterionAMRulesNode |
class |
VarianceRatioSplitCriterion |
class |
VRSplitCriterion |
Modifier and Type | Method and Description |
---|---|
double |
HoeffdingOptionTree.SplitNode.computeMeritOfExistingSplit(SplitCriterion splitCriterion,
double[] preDist) |
protected AttributeSplitSuggestion |
DecisionStump.findBestSplit(SplitCriterion criterion) |
AttributeSplitSuggestion[] |
FIMTDD.LeafNode.getBestSplitSuggestions(SplitCriterion criterion)
Return the best split suggestions for this node using the given split criteria
|
AttributeSplitSuggestion[] |
HoeffdingOptionTree.ActiveLearningNode.getBestSplitSuggestions(SplitCriterion criterion,
HoeffdingOptionTree ht) |
AttributeSplitSuggestion[] |
HoeffdingTree.ActiveLearningNode.getBestSplitSuggestions(SplitCriterion criterion,
HoeffdingTree ht) |
Modifier and Type | Method and Description |
---|---|
AttributeSplitSuggestion |
IademVFMLNumericAttributeClassObserver.getBestEvaluatedSplitSuggestion(SplitCriterion criterion,
double[] preSplitDist,
int attIndex,
boolean binaryOnly) |
Copyright © 2019 University of Waikato, Hamilton, NZ. All Rights Reserved.