Modifier and Type | Class and Description |
---|---|
class |
MultiLabelPrediction |
Modifier and Type | Method and Description |
---|---|
Prediction |
AbstractMultiLabelLearner.getPredictionForInstance(Example<Instance> example) |
Prediction |
AbstractClassifier.getPredictionForInstance(Example<Instance> example) |
Prediction |
Classifier.getPredictionForInstance(Instance inst)
Gets the reference to the header of the data stream.
|
Prediction |
AbstractMultiLabelLearner.getPredictionForInstance(Instance inst) |
Prediction |
AbstractClassifier.getPredictionForInstance(Instance inst) |
Prediction |
MultiLabelLearner.getPredictionForInstance(MultiLabelInstance instance) |
abstract Prediction |
AbstractMultiLabelLearner.getPredictionForInstance(MultiLabelInstance inst) |
Prediction |
MultiTargetLearnerSemiSupervised.getPredictionForInstance(MultiLabelInstance instance) |
Prediction |
MultiTargetLearnerSemiSupervised.getTrainingPrediction() |
Modifier and Type | Method and Description |
---|---|
Prediction |
MultilabelHoeffdingTree.getPredictionForInstance(Example<Instance> example) |
Prediction |
MultilabelHoeffdingTree.MultilabelLearningNodeClassifier.getPredictionForInstance(Instance inst,
HoeffdingTree ht) |
Prediction |
MajorityLabelset.getPredictionForInstance(MultiLabelInstance x) |
Prediction |
MultilabelHoeffdingTree.getPredictionForInstance(MultiLabelInstance inst) |
Prediction |
MEKAClassifier.getPredictionForInstance(MultiLabelInstance samoaInstance) |
Modifier and Type | Method and Description |
---|---|
static Prediction |
OzaBagML.combinePredictions(Prediction[] predictions,
Instance inst) |
static Prediction |
OzaBagML.compilePredictions(Classifier[] h,
Example example) |
Prediction |
OzaBagAdwinML.getPredictionForInstance(Example<Instance> example) |
Prediction |
OzaBagML.getPredictionForInstance(Example<Instance> example) |
Prediction |
OzaBagAdwinML.getPredictionForInstance(MultiLabelInstance instance) |
Prediction |
OzaBagML.getPredictionForInstance(MultiLabelInstance instance) |
Modifier and Type | Method and Description |
---|---|
static Prediction |
OzaBagML.combinePredictions(Prediction[] predictions,
Instance inst) |
Modifier and Type | Method and Description |
---|---|
Prediction |
ISOUPTree.getPredictionForInstance(MultiLabelInstance inst) |
Modifier and Type | Method and Description |
---|---|
Prediction |
BasicMultiTargetRegressor.getPredictionForInstance(MultiLabelInstance instance) |
Prediction |
BasicMultiLabelLearner.getPredictionForInstance(MultiLabelInstance instance) |
Modifier and Type | Method and Description |
---|---|
Prediction |
MultiTargetNoChange.getPredictionForInstance(MultiLabelInstance inst) |
Modifier and Type | Field and Description |
---|---|
Prediction |
AMRulesMultiLabelLearnerSemiSuper.prediction |
Modifier and Type | Method and Description |
---|---|
Prediction |
AMRulesMultiLabelLearnerSemiSuper.getPredictionForInstance(MultiLabelInstance inst) |
Prediction |
AMRulesMultiLabelLearner.getPredictionForInstance(MultiLabelInstance inst) |
Prediction |
AMRulesMultiLabelLearnerSemiSuper.getTrainingPrediction() |
Modifier and Type | Method and Description |
---|---|
protected double[] |
AMRulesMultiLabelLearnerSemiSuper.defaultRuleErrors(Prediction vote) |
protected double[] |
AMRulesMultiLabelLearner.defaultRuleErrors(Prediction vote) |
Modifier and Type | Method and Description |
---|---|
Prediction |
MultiLabelRule.getPredictionForInstance(MultiLabelInstance instance) |
Prediction |
LearningLiteral.getPredictionForInstance(MultiLabelInstance instance) |
Modifier and Type | Method and Description |
---|---|
protected double[] |
LearningLiteralClassification.getNormalizedErrors(Prediction prediction,
Instance instance) |
protected double[] |
LearningLiteralRegression.getNormalizedErrors(Prediction prediction,
Instance instance) |
protected abstract double[] |
LearningLiteral.getNormalizedErrors(Prediction prediction,
Instance inst) |
Modifier and Type | Field and Description |
---|---|
protected Prediction |
MultiLabelVote.vote |
protected Prediction |
AbstractErrorWeightedVoteMultiLabel.weightedVote |
Modifier and Type | Field and Description |
---|---|
protected List<Prediction> |
AbstractErrorWeightedVoteMultiLabel.votes |
Modifier and Type | Method and Description |
---|---|
Prediction |
ErrorWeightedVoteMultiLabel.computeWeightedVote()
Computes the weighted vote.
|
Prediction |
UniformWeightedVoteMultiLabel.computeWeightedVote() |
abstract Prediction |
AbstractErrorWeightedVoteMultiLabel.computeWeightedVote() |
Prediction |
InverseErrorWeightedVoteMultiLabel.computeWeightedVote() |
Prediction |
FirstHitVoteMultiLabel.computeWeightedVote() |
Prediction |
ErrorWeightedVoteMultiLabel.getPrediction() |
Prediction |
AbstractErrorWeightedVoteMultiLabel.getPrediction() |
Prediction |
MultiLabelVote.getVote() |
Modifier and Type | Method and Description |
---|---|
void |
ErrorWeightedVoteMultiLabel.addVote(Prediction prediction,
double[] error)
Adds a vote and the corresponding error for the computation of the weighted vote and respective weighted error.
|
void |
AbstractErrorWeightedVoteMultiLabel.addVote(Prediction vote,
double[] error) |
void |
MultiLabelVote.setVote(Prediction vote) |
Constructor and Description |
---|
MultiLabelVote(Prediction vote,
double error) |
Modifier and Type | Method and Description |
---|---|
abstract void |
AbstractMultiLabelErrorMeasurer.addPrediction(Prediction prediction,
MultiLabelInstance inst) |
void |
AbstractMultiTargetErrorMeasurer.addPrediction(Prediction prediction,
MultiLabelInstance inst) |
void |
MultiLabelErrorMeasurer.addPrediction(Prediction prediction,
MultiLabelInstance inst) |
void |
AbstractMultiLabelErrorMeasurer.addPrediction(Prediction prediction,
Prediction trueClass) |
void |
MultiLabelErrorMeasurer.addPrediction(Prediction prediction,
Prediction trueClass) |
void |
RelativeMeanAbsoluteDeviationMT.addPrediction(Prediction prediction,
Prediction trueClass,
double weight) |
void |
RelativeRootMeanSquaredErrorMT.addPrediction(Prediction prediction,
Prediction trueClass,
double weight) |
void |
MeanAbsoluteDeviationMT.addPrediction(Prediction prediction,
Prediction trueClass,
double weight) |
abstract void |
AbstractMultiLabelErrorMeasurer.addPrediction(Prediction prediction,
Prediction trueClass,
double weight) |
void |
MultiLabelErrorMeasurer.addPrediction(Prediction prediction,
Prediction trueClass,
double weight) |
void |
RootMeanSquaredErrorMT.addPrediction(Prediction prediction,
Prediction trueClass,
double weight) |
Modifier and Type | Method and Description |
---|---|
Prediction |
StackedPredictor.getPredictionForInstance(MultiLabelInstance inst) |
Prediction |
DominantLabelsClassifier.getPredictionForInstance(MultiLabelInstance inst) |
Prediction |
AdaptiveMultiTargetRegressor.getPredictionForInstance(MultiLabelInstance inst) |
Modifier and Type | Method and Description |
---|---|
Prediction |
InstanceOutputAttributesSelector.targetPredictionToSource(Prediction targetPrediction) |
Prediction |
InstanceTransformer.targetPredictionToSource(Prediction targetPrediction) |
Prediction |
NoInstanceTransformation.targetPredictionToSource(Prediction targetPrediction) |
Modifier and Type | Method and Description |
---|---|
Prediction |
InstanceOutputAttributesSelector.targetPredictionToSource(Prediction targetPrediction) |
Prediction |
InstanceTransformer.targetPredictionToSource(Prediction targetPrediction) |
Prediction |
NoInstanceTransformation.targetPredictionToSource(Prediction targetPrediction) |
Modifier and Type | Method and Description |
---|---|
Prediction |
MultiLabelRandomAMRules.getPredictionForInstance(MultiLabelInstance inst) |
Modifier and Type | Method and Description |
---|---|
void |
LearningPerformanceEvaluator.addResult(E testInst,
Prediction prediction)
Adds a learning result to this evaluator.
|
void |
BasicMultiTargetPerformanceEvaluator.addResult(Example<Instance> example,
Prediction prediction) |
void |
BasicAUCImbalancedPerformanceEvaluator.addResult(Example<Instance> arg0,
Prediction arg1) |
void |
BasicMultiLabelPerformanceEvaluator.addResult(Example<Instance> example,
Prediction y) |
void |
BasicClassificationPerformanceEvaluator.addResult(Example<Instance> testInst,
Prediction prediction) |
void |
WindowRegressionPerformanceEvaluator.addResult(Example<Instance> testInst,
Prediction prediction) |
void |
MultiTargetWindowRegressionPerformanceEvaluator.addResult(Example<Instance> testInst,
Prediction prediction) |
void |
BasicConceptDriftPerformanceEvaluator.addResult(Example<Instance> testInst,
Prediction prediction) |
void |
BasicRegressionPerformanceEvaluator.addResult(Example<Instance> example,
Prediction prediction) |
void |
MultiTargetWindowRegressionPerformanceRelativeMeasuresEvaluator.addResult(Example<Instance> testInst,
Prediction prediction) |
void |
WindowAUCImbalancedPerformanceEvaluator.addResult(Example<Instance> arg0,
Prediction arg1) |
void |
BasicMultiTargetPerformanceRelativeMeasuresEvaluator.addResult(Example<Instance> example,
Prediction prediction) |
Modifier and Type | Method and Description |
---|---|
Prediction |
Learner.getPredictionForInstance(E testInst) |
Prediction |
LearnerSemiSupervised.getTrainingPrediction() |
Copyright © 2019 University of Waikato, Hamilton, NZ. All Rights Reserved.